If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8a^2-20=0
a = 8; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·8·(-20)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*8}=\frac{0-8\sqrt{10}}{16} =-\frac{8\sqrt{10}}{16} =-\frac{\sqrt{10}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*8}=\frac{0+8\sqrt{10}}{16} =\frac{8\sqrt{10}}{16} =\frac{\sqrt{10}}{2} $
| 8u+5(u-4)=-7 | | -w/7=-34 | | -w=-34 | | 8v=-31 | | 158=108-v | | 18x-9=11x-2 | | 11x-2=18x-9 | | 236=-x+5 | | 36=4(5x-1) | | 164-y=71 | | 5/8=m+1/8 | | 11=-w+201 | | H(t)=-4.9t^2+30.5t+8.1 | | 16+(18+10)=(x+18)+10 | | 9q^2-3.5=14 | | 10+-12x=-26 | | 44=3v-13 | | 408=-0.5x^2+36x-150 | | 5b-4=6(b=2) | | 8h=146 | | Y=2x+-9 | | 3/2x-11/3=4x-10 | | 3x-6-5=38 | | Y=-12x+67 | | 3x-4(5x)=3 | | (v+7)(8v-5)=0 | | 18=0.32(w) | | Y=-13x+-110 | | (n-2)(5n-4)=0 | | 5/6=2m/(2m+2)-1/(3m-3) | | 8y-3=3y+17 | | 11y-10=4y+4 |